Concepts of Mathematics

October 22, 2012

Lecture 12-13

1 Principles of Mathematical Induction

Consider the following three statements, each involving a general positive integer n.

- (1) The sum of the first n odd numbers is equal to n^2 .
- (2) If $p \ge -1$ then $(1+p)^n \ge 1+np$.
- (3) The sum of the internal angles of an *n*-sided convex polygon is $(n-2)\pi$.

Proposition 1 (Mathematical Induction). Suppose for each positive integer n we have a statement P(n). If we prove the following two things:

- (a) (Induction Basis) P(1) is true;
- (b) (Induction Hypothesis) If P(n) is true then P(n+1) is also true;

Then P(n) is true for all positive integers n.

The logic is clear: $P(1) \Rightarrow P(2), P(2) \Rightarrow P(3), P(2) \Rightarrow P(3), \dots$ It follows that P(n) is true for all positive integers n.

Example 1. Let P(n) denote the statement: $1 + 3 + 5 + \cdots + (2n - 1) = n^2$, where $n \ge 1$.

Proof. (a) P(1) is true: $1 = 1^2$.

(b) Suppose P(n) is true. Then $1 + 3 + 5 + \dots + (2n - 1) = n^2$. Adding 2n + 1 to both sides we have

$$1 + 3 + 5 + \dots + (2n - 1) + (2n + 1) = n^2 + 2n + 1 = (n + 1)^2.$$

This means that the statement P(n + 1) is true. Thus P(n) is true for all positive integers n. **Example 2.** Let P(n) denote the statement: If $p \ge -1$ then $(1 + p)^n \ge 1 + np$ for all positive integers n.

Proof. (a) P(1) is true: $1 + p \ge 1 + p$.

(b) Suppose P(n) is true. Then $(1+p)^n \ge 1+np$. Since $p \ge -1$, then $p+1 \ge 0$. Multiplying 1+p to both sides, we have

$$(1+p)(1+p)^n \ge (1+p)(1+np) = 1+np+p+np^2 \ge 1+(n+1)p.$$

This is exactly the statement P(n+1). Thus P(n) is true for all positive integers n.

Proposition 2 (Mathematical Induction). Let k be an integer. Suppose for each integer $n \ge k$ we have a statement P(n). If we prove the following two things:

- (a) (Induction Basis) P(k) is true;
- (b) (Induction Hypothesis) If P(n) is true then P(n+1) is also true;

Then P(n) is true for all integers $n \ge k$.

Example 3. Let P(n) denote the statement: The sum of internal angles of an *n*-sided convex polygon is $(n-2)\pi$.

Proof. Note that n must be an integer larger than or equal to 3, i.e., $n \ge 3$.

(a) P(3) is true: checked in junior high school.

(b) Suppose P(n) is true. Let $A_1A_2 \cdots A_{n+1}$ be an (n + 1)-sided polygon whose vertices are $A_1, A_2, \ldots, A_{n+1}$. Draw a segment between the two vertices A_1 and A_{n+1} . We have a triangle $\Delta A_1A_nA_{n+1}$ and an *n*-sided polygon $A_1A_2 \ldots A_n$. Let α_i denote the internal angle of the polygon $A_1A_2 \cdots A_{n+1}$ at the vertex A_i, β_j the internal angle of the polygon $A_1A_2 \cdots A_n$ at the vertex A_j , and γ_k the internal angle of $\Delta A_1A_nA_{n+1}$ at the vertex A_k . Then $\alpha_1 = \beta_1 + \gamma_1, \alpha_n = \beta_n + \gamma_n, \alpha_{n+1} = \gamma_{n+1}$, and $\alpha_i = \beta_i$ ($2 \le i \le n-1$). Thus

$$\alpha_1 + \alpha_2 + \dots + \alpha_{n+1} = (\beta_1 + \gamma_1) + \beta_2 + \dots + \beta_{n-1} + (\beta_n + \gamma_n) + \gamma_{n+1} = (\gamma_1 + \gamma_n + \gamma_{n+1}) + (\beta_1 + \dots + \beta_{n-1} + \beta_n) = \pi + (n-2)\pi = (n-1)\pi = ((n+1)-2))\pi.$$

This means that the statement P(n+1) is true. So P(n) is true for all integers $n \ge 3$.

Example 4. Let P(n) denote the statement: $2^n < n!$, where $n \ge 1$.

Proof. (a) P(1) is true: Trivial.

(b) Suppose P(n) is true, i.e., $2^n < n!$. Then

$$2^{n+1} = 2 \cdot 2^n < (n+1) \cdot n! = (n+1)!.$$

This is exactly the statement P(n + 1). Thus P(n) is true for all positive integers n. What is wrong?

Consider the problem: $2^n \leq n!$ for $n \geq 0$.

Proposition 3 (Strong Mathematical Induction). Let k be an integer. Suppose for each integer $n \ge k$ we have a statement P(n). If we prove the following two things:

- (a) (Induction Basis) P(k) is true.
- (b) (Strong Induction Hypothesis) If P(k), P(k+1), ..., P(n) are true then P(n+1) is also true.

Then P(n) is true for all integers $n \ge k$.

Example 5. Let P(n) denote the statement: $u_n = 2^n + 1$, where u_n is the sequence with $n \ge 0$, $u_0 = 2$, $u_1 = 3$, and

$$u_{n+1} = 3u_n - 2u_{n-1}, \quad n \ge 1.$$

Proof. (a) P(1) is true: $2 = 1 + 1 = 2^0 + 1$.

(b) Suppose P(n) is true, i.e., $u_n = 2^n + 1$. Then by induction hypothesis

$$u_{n+1} = 3u_n - 2u_{n-1} = 3 \cdot (2^n + 1) - 2 \cdot (2^{n-1} + 1) = 2^{n+1} + 1.$$

This means that the statement P(n+1) is true. Thus P(n) is true for all integers $n \ge 0$.

Example 6. Find a closed formula for the sum $1^2 + 2^2 + \cdots + n^2$.

Proof. It is known that $1 + 2 + \cdots + n = \frac{1}{2}n(n+1)$. It suggests that the wanted closed formula for the sum is a polynomial of degree 3. Set

$$1^{2} + 2^{2} + \dots + n^{2} = a_{0} + a_{1}n + a_{2}n^{2} + a_{3}n^{3}.$$

Then for n = 1, 2, 3, 4, we have the system of linear equations

$$\begin{cases}
a_0 +a_1 +a_2 +a_3 = 1 \\
a_0 +2a_1 +2^2a_2 +2^3a_3 = 5 \\
a_0 +3a_1 +3^2a_2 +3^3a_3 = 14 \\
a_0 +4a_1 +4^2a_2 +4^3a_3 = 30
\end{cases}$$

By the Cramer's rule we have that the unique solution: $a_0 = 0$, $a_1 = \frac{1}{6}$, $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$. Now we prove by mathematical induction the proposed formula

$$P(n): 1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1).$$

(a) P(1) is true: $1 = \frac{1}{6} \cdot 2 \cdot 3$.

(b) Suppose P(n) is true. Then by induction hypothesis

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{1}{6}n(n+1)(2n+1) + (n+1)^{2}$$

$$= \frac{1}{6}(n+1)[n(2n+1) + 6(n+1)]$$

$$= \frac{1}{6}(n+1)(2n^{2} + 7n + 6)$$

$$= \frac{1}{6}(n+1)(n+2)(2n+3)$$

$$= \frac{1}{6}(n+1)[(n+1) + 2][2(n+1) + 3].$$

This means that the statement P(n+1) is true. Thus P(n) is true for all integers $n \ge 1$.

Definition 4. A **prime number** is a positive integer p such that $p \ge 2$ and the only positive integers dividing p are 1 and p.

Proposition 5. Every positive integer greater than 1 is equal to a product of prime numbers.

Proof. For each positive integer $n \ge 2$, let P(n) denote the statement: the integer n is equal to a product of prime numbers.

(a) P(2) is true, since 2 is a prime number.

(b) $P(2), P(3), \ldots, P(n) \Rightarrow P(n+1)$: For the positive integer n+1, if n+1 is a prime p, then n+1=p is already a product of prime numbers (only one prime number in the product); if n+1

is not a prime number, then there is a positive integer a dividing n + 1. Writing $b = \frac{n+1}{a}$, we have b is an integer, $b \ge 2$, and

$$n + 1 = ab$$
, where $a, b \in \{2, 3, \dots, n\}$.

By induction hypothesis, the positive integers a and b have prime factorizations, say, $a = p_1 p_2 \cdots p_k$ and $b = q_1 q_2 \cdots q_l$. Then $n + 1 = p_1 p_2 \cdots p_k q_1 q_2 \cdots q_l$. This means that n + 1 is a product of prime numbers.

2 Euler's Formula and Platonic Solids

A **polyhedron** is a solid whose surface consists of a number of **faces**, all of which are convex polygons, such that any side lies on exactly one other face. The corners of the faces are called **vertices** of the polyhedron, and their sides are the **edges** of the polyhedron.

A polyhedron is said to be **convex** if, whenever we choose two points on its surface, the straight line joining them lies entirely within the polyhedron.

Example 7. (a) A cube has 8 vertices, 12 edges, and 6 faces.

(b) A tetrahedron has 4 vertices, 6 edges, and 4 faces.

(c) The prism whose base is a rectangle is a polyhedron, having 5 vertices, 8 edges, and 5 faces.

Theorem 6 (Euler's Formula). For any convex polyhedron with V vertices, E edges, and F faces, we have the relation

$$V - E + F = 2$$

Proof. It follows from the following theorem.

Definition 7. A graph is a figure in the plane consisting of a collection of points (called **vertices**) and some edges joining various pairs of these points. A graph is **connected** if we can get from any vertex of the graph to any other vertex by going along a path of edges in the graph. A graph is called a **plane graph** if there are no two edges crossing each other. A **loop** in a graph is an edge that joins two identical vertices.

A plane graph separate the plane into some connected regions.

Theorem 8 (Euler's Relation). For any connected plane graph G with v vertices, e edges, and r regions, we have

$$v - e + r = 2.$$

Proof. Let P(n) be the statement: every connected plane graph with n edges satisfies the formula v - e + r = 2. Note that P(n) is a statement about lots of plane graphs. For instance, P(1) is a statement about two plane graphs: a segment graph and a loop graph. We apply mathematical induction to prove P(n) for all positive integers n.

(a) P(1) is true: A segment graph has 2 vertices, 1 edge, and 1 face; so 2 - 1 + 1 = 2. A loop graph has 1 vertex, 1 edge, and 2 faces; so 1 - 1 + 2 = 2.

(b) Suppose P(n) is true for n, i.e., every plane graph with n edges satisfies the Euler formula. Let G be a plane graph with n + 1 edges. We have two cases.

CASE 1: G has a bounded region. Let x be an edge of G bounding a bounded region; and let G' be a graph obtained from G by removing the edge x. It is clear that G' is connected and planar, v(G) = v(G'), e(G) = e(G') + 1, and r(G) = r(G') + 1. Since v(G') - e(G') + r(G') = 2, we have

$$v(G) - e(G) + r(G) = v(G') - [e(G') + 1] + [r(G') + 1] = v(G') - e(G') + r(G') = 2.$$

This means that P(n+1) is true.

CASE 2: G has no bounded region. Then G has the only unbounded region. So G has no closed path. It follows that G has an end-vertex, a vertex joined by only one edge. [Otherwise, if each vertex is joined by two edges, then we can start to travel on edges to obtain a closed path from one vertex, reaching an vertex through an edge and leaving the same vertex through another edge.] Take a end-vertex of G and remove the end-vertex and the only edge joining to it; we obtain a connected plane graph G'. Note that v(G) = v(G') + 1, e(G) = e(G') + 1, and r(G) = r(G'). then

$$v(G) - e(G) + r(G) = [v(G') + 1] - [e(G') + 1] + r(G') = v(G') - e(G') + r(G') = 2.$$

Now we have seen that P(n+1) is true. The proof is finished.

3 Regular and Platonic Solids

A convex polygon is said to be **regular** if all its sides are of equal length and all its internal angles are equal. A polyhedron is said to be **regular** if (i) all its faces (convex polygons) are regular and have the same number of sides; (ii) all vertices have the same number of edges joining them. The Platonic solids are the five regular polyhedra: *cube*, *tetrahedron*, *octahedron*, *dodecahedron*, *and icosahedron*.

Theorem 9. The only regular convex polyhedra are the five Platonic solids.

Proof. Let P be a regular polyhedron with v vertices, e edges, and f faces. Let n be the number of sides of a face, and d the number of edges joining a vertex. Then

$$2e = nf$$
,

[It follows from the counting of the number of ordered pairs (ε, σ) , where ε is an edge, σ is a face, and ε bounds σ .]

2e = dv.

[It follows from the counting of the number of ordered pairs (ν, ε) , where ν is a vertex, ε is an edge, and ε joins ν .] Thus

$$f = \frac{2e}{n}, \quad v = \frac{2e}{d}$$

Recall the Euler formula v - e + f = 2; we have $\frac{2e}{d} - e + \frac{2e}{n} = 2$. Dividing both sides by 2e, we have

$$\frac{1}{d} + \frac{1}{n} = \frac{1}{e} + \frac{1}{2}.$$
(1)

Note that $n \ge 3$, as a convex polygon must have at least 3 sides; likewise $d \ge 3$, since it is geometrically clear that in a polyhedron a vertex must belong to at least 3 edges. Since the right hand side of (1) is at least $\frac{1}{2}$, it follows that we cannot have both $d \ge 4$ and $n \ge 4$. So we have either $d \le 3$ or $n \le 3$, and subsequently either d = 3 or n = 3.

CASE d = 3. Then (1) becomes

$$\frac{1}{n} = \frac{1}{e} + \frac{1}{6}.$$

Since e is positive, it follows that $3 \le n \le 5$. So (n, e) = (3, 6), (4, 12), (5, 30); i.e., (v, e, f) = (4, 6, 4), (8, 12, 6), (20, 30, 12).

CASE n = 3. Then (1) becomes

$$\frac{1}{d} = \frac{1}{e} + \frac{1}{6}.$$

Since e is positive, it follows that $3 \le d \le 5$. So (d, e) = (3, 6), (4, 12), (5, 30); i.e., (v, e, f) = (4, 6, 4), (6, 12, 8), (12, 30, 20).

We thus have five regular polyhedra: tetrahedron (4, 6, 4); cube (8, 12, 6); octahedron (6, 12, 8); dodecahedron (20, 30, 12); icosahedron (12, 30, 20).

A complete graph K_n is a graph with n vertices such that every two vertices are adjacent by an edge. The complete graph K_5 is not planar. Since $v(K_5) = 5$, $e(K_5) = 10$, if K_5 is planar then by the Euler formula we have $f(K_5) = 2 - v + e = 7$, i.e., K_5 has 7 faces. Since $2e \ge 3f$, it follows that $20 = 2e \ge 3f = 21$, this is a contradiction.

A complete bipartite graph is a graph $K_{m,n}$ whose vertex set can be divided into two parts V_1 and V_2 with $|V_1| = m$ and $|V_2| = n$, and the edges set is $V_1 \times V_2$. The complete bipartite graph $K_{3,3}$ is non-planar. Note that v = 6 and e = 9. If $K_{3,3}$ is planar, then by the Euler formula we have r = 2 - v + e = 5 regions. Note that every cycle of a bipartite graph has even length, so every cycle of $K_{3,3}$ has length at least 4. Thus $2e \ge 4f$ implies $18 \ge 20$. This is a contradiction.

Example 8. The football graph has faces of pentagons and hexagons. Every vertex shares 3 edges and ever edge shares 2 vertices. Each pentagon is surrounded by 5 hexagons and each hexagon is surrounded by 3 pentagons. Find the number of vertices, edges, pentagons, and hexagons of the football graph.

Let v, e be the number of vertices and edges respectively. Let f_5, f_6 be the number of pentagons and hexagons. Then

$$3v = 2e$$
, $5f_5 + 6f_6 = 2e$, $v - e + f_5 + f_6 = 2$

Note that the number of edges shared by both pentagons and hexagons is counted in two ways: counting by pentagons, counting by hexagons. We then have $5f_5 = 3f_6$.

Put e = 3v/2 into other equations, we have

$$v - \frac{3}{2}v + f_5 + f_6 = 2$$
, $5f_5 + 6f_6 = 3v$, $5f_5 = 3f_6$.

Thus $f_5 = \frac{3}{5}f_6$.

$$-\frac{1}{2}v + \frac{3}{5}f_6 + f_6 = 2, \quad 3f_6 + 6f_6 = 3v.$$
$$v = 3f_6, \quad -5v + 16f_6 = 20.$$
$$f_6 = 20, \quad v = 60, \quad e = 90, \quad f_5 = 12.$$