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October 22, 2012

Lecture 12-13

1 Principles of Mathematical Induction

Consider the following three statements, each involving a general positive integer n.

(1) The sum of the first n odd numbers is equal to n2.

(2) If p ≥ −1 then (1 + p)n ≥ 1 + np.

(3) The sum of the internal angles of an n-sided convex polygon is (n− 2)π.

Proposition 1 (Mathematical Induction). Suppose for each positive integer n we have a statement
P (n). If we prove the following two things:

(a) (Induction Basis) P (1) is true;

(b) (Induction Hypothesis) If P (n) is true then P (n + 1) is also true;

Then P (n) is true for all positive integers n.

The logic is clear: P (1) ⇒ P (2), P (2) ⇒ P (3), P (2) ⇒ P (3), . . . It follows that P (n) is true
for all positive integers n.

Example 1. Let P (n) denote the statement: 1 + 3 + 5 + · · ·+ (2n− 1) = n2, where n ≥ 1.

Proof. (a) P (1) is true: 1 = 12.
(b) Suppose P (n) is true. Then 1 + 3 + 5 + · · · + (2n − 1) = n2. Adding 2n + 1 to both sides

we have
1 + 3 + 5 + · · ·+ (2n− 1) + (2n + 1) = n2 + 2n + 1 = (n + 1)2.

This means that the statement P (n + 1) is true. Thus P (n) is true for all positive integers n.

Example 2. Let P (n) denote the statement: If p ≥ −1 then (1 + p)n ≥ 1 + np for all positive
integers n.

Proof. (a) P (1) is true: 1 + p ≥ 1 + p.
(b) Suppose P (n) is true. Then (1 + p)n ≥ 1 + np. Since p ≥ −1, then p + 1 ≥ 0. Multiplying

1 + p to both sides, we have

(1 + p)(1 + p)n ≥ (1 + p)(1 + np) = 1 + np + p + np2 ≥ 1 + (n + 1)p.

This is exactly the statement P (n + 1). Thus P (n) is true for all positive integers n.
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Proposition 2 (Mathematical Induction). Let k be an integer. Suppose for each integer n ≥ k we
have a statement P (n). If we prove the following two things:

(a) (Induction Basis) P (k) is true;

(b) (Induction Hypothesis) If P (n) is true then P (n + 1) is also true;

Then P (n) is true for all integers n ≥ k.

Example 3. Let P (n) denote the statement: The sum of internal angles of an n-sided convex
polygon is (n− 2)π.

Proof. Note that n must be an integer larger than or equal to 3, i.e., n ≥ 3.
(a) P (3) is true: checked in junior high school.
(b) Suppose P (n) is true. Let A1A2 · · ·An+1 be an (n + 1)-sided polygon whose vertices are

A1, A2, . . . , An+1. Draw a segment between the two vertices A1 and An+1. We have a triangle
∆A1AnAn+1 and an n-sided polygon A1A2 . . . An. Let αi denote the internal angle of the polygon
A1A2 · · ·An+1 at the vertex Ai, βj the internal angle of the polygon A1A2 · · ·An at the vertex Aj ,
and γk the internal angle of ∆A1AnAn+1 at the vertex Ak. Then α1 = β1 + γ1, αn = βn + γn,
αn+1 = γn+1, and αi = βi (2 ≤ i ≤ n− 1). Thus

α1 + α2 + · · ·+ αn+1 = (β1 + γ1) + β2 + · · ·+ βn−1 + (βn + γn) + γn+1

= (γ1 + γn + γn+1) + (β1 + · · ·+ βn−1 + βn)
= π + (n− 2)π = (n− 1)π =

(
(n + 1)− 2)

)
π.

This means that the statement P (n + 1) is true. So P (n) is true for all integers n ≥ 3.

Example 4. Let P (n) denote the statement: 2n < n!, where n ≥ 1.

Proof. (a) P (1) is true: Trivial.
(b) Suppose P (n) is true, i.e., 2n < n!. Then

2n+1 = 2 · 2n < (n + 1) · n! = (n + 1)!.

This is exactly the statement P (n + 1). Thus P (n) is true for all positive integers n. What is
wrong?

Consider the problem: 2n ≤ n! for n ≥ 0.

Proposition 3 (Strong Mathematical Induction). Let k be an integer. Suppose for each integer
n ≥ k we have a statement P (n). If we prove the following two things:

(a) (Induction Basis) P (k) is true.

(b) (Strong Induction Hypothesis) If P (k), P (k+1), . . . , P (n) are true then P (n+1) is also true.

Then P (n) is true for all integers n ≥ k.

Example 5. Let P (n) denote the statement: un = 2n + 1, where un is the sequence with n ≥ 0,
u0 = 2, u1 = 3, and

un+1 = 3un − 2un−1, n ≥ 1.
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Proof. (a) P (1) is true: 2 = 1 + 1 = 20 + 1.
(b) Suppose P (n) is true, i.e., un = 2n + 1. Then by induction hypothesis

un+1 = 3un − 2un−1 = 3 · (2n + 1)− 2 · (2n−1 + 1) = 2n+1 + 1.

This means that the statement P (n + 1) is true. Thus P (n) is true for all integers n ≥ 0.

Example 6. Find a closed formula for the sum 12 + 22 + · · ·+ n2.

Proof. It is known that 1 + 2 + · · ·+ n = 1
2n(n + 1). It suggests that the wanted closed formula for

the sum is a polynomial of degree 3. Set

12 + 22 + · · ·+ n2 = a0 + a1n + a2n
2 + a3n

3.

Then for n = 1, 2, 3, 4, we have the system of linear equations




a0 +a1 +a2 +a3 = 1
a0 +2a1 +22a2 +23a3 = 5
a0 +3a1 +32a2 +33a3 = 14
a0 +4a1 +42a2 +43a3 = 30

By the Cramer’s rule we have that the unique solution: a0 = 0, a1 = 1
6 , a2 = 1

2 , a3 = 1
3 . Now we

prove by mathematical induction the proposed formula

P (n) : 12 + 22 + · · ·+ n2 =
1
6
n(n + 1)(2n + 1).

(a) P (1) is true: 1 = 1
6 · 2 · 3.

(b) Suppose P (n) is true. Then by induction hypothesis

12 + 22 + · · ·+ n2 + (n + 1)2 =
1
6
n(n + 1)(2n + 1) + (n + 1)2

=
1
6
(n + 1)

[
n(2n + 1) + 6(n + 1)

]

=
1
6
(n + 1)(2n2 + 7n + 6)

=
1
6
(n + 1)(n + 2)(2n + 3)

=
1
6
(n + 1)

[
(n + 1) + 2

][
2(n + 1) + 3

]
.

This means that the statement P (n + 1) is true. Thus P (n) is true for all integers n ≥ 1.

Definition 4. A prime number is a positive integer p such that p ≥ 2 and the only positive
integers dividing p are 1 and p.

Proposition 5. Every positive integer greater than 1 is equal to a product of prime numbers.

Proof. For each positive integer n ≥ 2, let P (n) denote the statement: the integer n is equal to a
product of prime numbers.

(a) P (2) is true, since 2 is a prime number.
(b) P (2), P (3), . . . , P (n) ⇒ P (n + 1): For the positive integer n + 1, if n + 1 is a prime p, then

n + 1 = p is already a product of prime numbers (only one prime number in the product); if n + 1
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is not a prime number, then there is a positive integer a dividing n + 1. Writing b = n+1
a , we have

b is an integer, b ≥ 2, and

n + 1 = ab, where a, b ∈ {2, 3, . . . , n}.
By induction hypothesis, the positive integers a and b have prime factorizations, say, a = p1p2 · · · pk

and b = q1q2 · · · ql. Then n + 1 = p1p2 · · · pkq1q2 · · · ql. This means that n + 1 is a product of prime
numbers.

2 Euler’s Formula and Platonic Solids

A polyhedron is a solid whose surface consists of a number of faces, all of which are convex
polygons, such that any side lies on exactly one other face. The corners of the faces are called
vertices of the polyhedron, and their sides are the edges of the polyhedron.

A polyhedron is said to be convex if, whenever we choose two points on its surface, the straight
line joining them lies entirely within the polyhedron.

Example 7. (a) A cube has 8 vertices, 12 edges, and 6 faces.
(b) A tetrahedron has 4 vertices, 6 edges, and 4 faces.
(c) The prism whose base is a rectangle is a polyhedron, having 5 vertices, 8 edges, and 5 faces.

Theorem 6 (Euler’s Formula). For any convex polyhedron with V vertices, E edges, and F faces,
we have the relation

V − E + F = 2.

Proof. It follows from the following theorem.

Definition 7. A graph is a figure in the plane consisting of a collection of points (called vertices)
and some edges joining various pairs of these points. A graph is connected if we can get from any
vertex of the graph to any other vertex by going along a path of edges in the graph. A graph is
called a plane graph if there are no two edges crossing each other. A loop in a graph is an edge
that joins two identical vertices.

A plane graph separate the plane into some connected regions.

Theorem 8 (Euler’s Relation). For any connected plane graph G with v vertices, e edges, and r
regions, we have

v − e + r = 2.

Proof. Let P (n) be the statement: every connected plane graph with n edges satisfies the formula
v − e + r = 2. Note that P (n) is a statement about lots of plane graphs. For instance, P (1) is a
statement about two plane graphs: a segment graph and a loop graph. We apply mathematical
induction to prove P (n) for all positive integers n.

(a) P (1) is true: A segment graph has 2 vertices, 1 edge, and 1 face; so 2− 1 + 1 = 2. A loop
graph has 1 vertex, 1 edge, and 2 faces; so 1− 1 + 2 = 2.

(b) Suppose P (n) is true for n, i.e., every plane graph with n edges satisfies the Euler formula.
Let G be a plane graph with n + 1 edges. We have two cases.

Case 1: G has a bounded region. Let x be an edge of G bounding a bounded region; and let G′

be a graph obtained from G by removing the edge x. It is clear that G′ is connected and planar,
v(G) = v(G′), e(G) = e(G′) + 1, and r(G) = r(G′) + 1. Since v(G′)− e(G′) + r(G′) = 2, we have

v(G)− e(G) + r(G) = v(G′)− [
e(G′) + 1

]
+

[
r(G′) + 1

]
= v(G′)− e(G′) + r(G′) = 2.
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This means that P (n + 1) is true.
Case 2: G has no bounded region. Then G has the only unbounded region. So G has no closed

path. It follows that G has an end-vertex, a vertex joined by only one edge. [Otherwise, if each
vertex is joined by two edges, then we can start to travel on edges to obtain a closed path from
one vertex, reaching an vertex through an edge and leaving the same vertex through another edge.]
Take a end-vertex of G and remove the end-vertex and the only edge joining to it; we obtain a
connected plane graph G′. Note that v(G) = v(G′) + 1, e(G) = e(G′) + 1, and r(G) = r(G′). then

v(G)− e(G) + r(G) =
[
v(G′) + 1

]− [
e(G′) + 1

]
+ r(G′) = v(G′)− e(G′) + r(G′) = 2.

Now we have seen that P (n + 1) is true. The proof is finished.

3 Regular and Platonic Solids

A convex polygon is said to be regular if all its sides are of equal length and all its internal angles
are equal. A polyhedron is said to be regular if (i) all its faces (convex polygons) are regular and
have the same number of sides; (ii) all vertices have the same number of edges joining them. The
Platonic solids are the five regular polyhedra: cube, tetrahedron, octahedron, dodecahedron, and
icosahedron.

Theorem 9. The only regular convex polyhedra are the five Platonic solids.

Proof. Let P be a regular polyhedron with v vertices, e edges, and f faces. Let n be the number
of sides of a face, and d the number of edges joining a vertex. Then

2e = nf,

[It follows from the counting of the number of ordered pairs (ε, σ), where ε is an edge, σ is a face,
and ε bounds σ.]

2e = dv.

[It follows from the counting of the number of ordered pairs (ν, ε), where ν is a vertex, ε is an edge,
and ε joins ν.] Thus

f =
2e

n
, v =

2e

d
.

Recall the Euler formula v− e+ f = 2; we have 2e
d − e+ 2e

n = 2. Dividing both sides by 2e, we have

1
d

+
1
n

=
1
e

+
1
2
. (1)

Note that n ≥ 3, as a convex polygon must have at least 3 sides; likewise d ≥ 3, since it is
geometrically clear that in a polyhedron a vertex must belong to at least 3 edges. Since the right
hand side of (1) is at least 1

2 , it follows that we cannot have both d ≥ 4 and n ≥ 4. So we have
either d ≤ 3 or n ≤ 3, and subsequently either d = 3 or n = 3.

Case d = 3. Then (1) becomes
1
n

=
1
e

+
1
6
.

Since e is positive, it follows that 3 ≤ n ≤ 5. So (n, e) = (3, 6), (4, 12), (5, 30); i.e., (v, e, f) =
(4, 6, 4), (8, 12, 6), (20, 30, 12).

Case n = 3. Then (1) becomes
1
d

=
1
e

+
1
6
.

5



Since e is positive, it follows that 3 ≤ d ≤ 5. So (d, e) = (3, 6), (4, 12), (5, 30); i.e., (v, e, f) =
(4, 6, 4), (6, 12, 8), (12, 30, 20).

We thus have five regular polyhedra: tetrahedron (4, 6, 4); cube (8, 12, 6); octahedron (6, 12, 8);
dodecahedron (20, 30, 12); icosahedron (12, 30, 20).

A complete graph Kn is a graph with n vertices such that every two vertices are adjacent by
an edge. The complete graph K5 is not planar. Since v(K5) = 5, e(K5) = 10, if K5 is planar then
by the Euler formula we have f(K5) = 2− v + e = 7, i.e., K5 has 7 faces. Since 2e ≥ 3f , it follows
that 20 = 2e ≥ 3f = 21, this is a contradiction.

A complete bipartite graph is a graph Km,n whose vertex set can be divided into two parts V1

and V2 with |V1| = m and |V2| = n, and the edges set is V1 × V2. The complete bipartite graph
K3,3 is non-planar. Note that v = 6 and e = 9. If K3,3 is planar, then by the Euler formula we
have r = 2− v + e = 5 regions. Note that every cycle of a bipartite graph has even length, so every
cycle of K3,3 has length at least 4. Thus 2e ≥ 4f implies 18 ≥ 20. This is a contradiction.

Example 8. The football graph has faces of pentagons and hexagons. Every vertex shares 3 edges
and ever edge shares 2 vertices. Each pentagon is surrounded by 5 hexagons and each hexagon is
surrounded by 3 pentagons. Find the number of vertices, edges, pentagons, and hexagons of the
football graph.

Let v, e be the number of vertices and edges respectively. Let f5, f6 be the number of pentagons
and hexagons. Then

3v = 2e, 5f5 + 6f6 = 2e, v − e + f5 + f6 = 2.

Note that the number of edges shared by both pentagons and hexagons is counted in two ways:
counting by pentagons, counting by hexagons. We then have 5f5 = 3f6.

Put e = 3v/2 into other equations, we have

v − 3
2
v + f5 + f6 = 2, 5f5 + 6f6 = 3v, 5f5 = 3f6.

Thus f5 = 3
5f6.

−1
2
v +

3
5
f6 + f6 = 2, 3f6 + 6f6 = 3v.

v = 3f6, −5v + 16f6 = 20.

f6 = 20, v = 60, e = 90, f5 = 12.
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